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Abstract

In an earlier paper (MLQ 54, 129-144) the first author initiated the study of generic
cuts of a model of Peano arithmetic relative to a notion of an indicator in the model.
This paper extends that work. We generalise the idea of indicator to a related
neighbourhood system; this allows the theory to be extended to one that includes
the case of elementary cuts. Most results transfer to this more general context, and
in particular we obtain the idea of a generic cut relative to a neighbourhood system,
which is studied in more detail. The main new result on generic cuts presented here
is a description of truth in the structure (M, I'), where I is a generic cut of a model M
of Peano arithmetic. The special case of elementary generic cuts provides a partial
answer to a question of Kossak (Notre Dame J. Formal Logic 36, 519-530).
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1 Introduction

The first author has introduced the idea of a generic cut of a model M of
Peano arithmetic [2]. His paper, which we refer to as GCMA for convenience,
considers the set of cuts or initial segments of a model of arithmetic as a
topological space. An indicator serves to select a subspace of this space and
give an idea of distance. A generic cut, relative to the chosen indicator, is
an element of this subspace which is a member of each comeagre subset that
is invariant under automorphisms of the original model M. It was shown in
GCMA that generic cuts exist in all countable arithmetically saturated models
of PA, and some of their properties were studied.
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The first aim of this paper is to generalise this to a setting that admits the case
of elementary cuts as a special case. In Section 2, we give the basic definitions,
namely that of a neighbourhood system, and that of a species. A neighbour-
hood system is an abstraction of the topological information obtained from
an indicator, together with some conditions on definability in the model. A
species is a set of cuts that can be indicated by a neighbourhood system. The
main relaxation in the definitions here is in using classes or class functions
in the usual sense of these words in models of arithmetic, instead of sets and
functions which are definable outright.

In Section 3 we set up the topology in which we will work. The major step is
proving that any closed species in a countable model is homeomorphic to 2¢
or 2 4+ 1 where 2¥ denotes the Cantor set. This enables us to apply the Baire
Category Theorem to and play Banach—Mazur games on our space to obtain
information about enforceable properties. We go on to define the central notion
of this paper, that of a generic cut. Although we are not in a position to prove
existence theorems at this stage, we do prove a theorem showing the existence
of generic cuts under rather general hypotheses (Theorem 3.10) that will be
particularly useful in motivating the results in Section 5 and Section 6.

Section 4 gives examples of enforceable properties and serves to provide a list
of properties enjoyed by generic cuts when they do exist. Most of this section
is rather similar to results in GCMA and serve to illustrate that this work lifts
easily to the more general situation we are now in.

Section 5 gives the existence theorems for generic cuts in countable arith-
metically saturated models of arithmetic. Once again, the proof models that
in GCMA, but a more elegant approach turns out to be possible by looking
at multi-variable versions of homogeneity notions in GCMA. Also, we have
taken the time to extend this argument by showing the necessity of arithmetic
saturation, and to analyse the proof into its finitistic core, with a view to ex-
tracting information about the true statements in the structure (M, I) where
I is generic.

Section 6 studies how generic cuts behave under the action of the automor-
phism group of the model. The back-and-forth system that we took from
GCMA is what most our results there are based on. A few new conjugacy and
non-conjugacy properties are proved, including a characterisation of when two
generic cuts are conjugate. We also give here a weak quantifier elimination re-
sult, the main theorem in this paper. It says that if [ is a generic cut of
a model M of PA, then the orbit of an element of M under the action of
Aut(M, I) is completely determined by classes that are relatively low in the
formula hierarchy.

We conclude the paper in Section 7 by gathering together various facts about



elementary generic cuts and surveying the relationships of them to the el-
ementary cuts that appeared in the literature. In particular, we show that
elementary generic cuts give new examples of free cuts, a notion introduced
by Roman Kossak. This partially answers a question raised by him on the
cardinality of orbits of free cuts, and suggests new ways to tackle his other
problems too.

Except where specifically noted, the notation used in this paper is standard,
and follows that in GCMA, Kaye [1] and Kossak—Schmerl [9]. It is sometimes
helpful to consider models of Peano arithmetic as models of finite set theory
via the usual Ackermann interpretation [3]. We assume some knowledge of
semiregular, regular and strong cuts, the basic properties of which can be found
in Kirby—Paris [5] and the book by Kossak and Schmerl already mentioned.
Oxtoby [13] contains some useful background on Baire category.

Most of the results in this paper first appeared in the second author’s quali-
fying MPhil dissertation at the University of Birmingham.

2 Neighbourhood systems and species of cuts

Throughout this paper, M is a nonstandard model of PA. We write £, for
the usual first order language {+, x, <,0,1} for arithmetic, and (-, -) for the
usual pairing function in Z. Let cl(¢) denote the definable closure of the
tuple ¢ € M, and cl(¢) the least initial segment of M containing cl(¢).?

We will sometimes adjoin to M a point at infinity, co. By definition we have
r<ooand co+x=00=o00—zforevery x € M. If B€ M U{co}, then
M_.p and M¢p denote respectively the sets

{reM:z<B}and {xr € M:z < B}.
A cut of M is a nonempty initial segment closed under successors. We write

I C. M to mean ‘I is a cut of M. In distinction to GCMA, we do not require
cuts to be £ structures here. For a,b € M U {oo} we denote the set

{reM:a<x<b}

by [a, b]. Define
C={I:1C.M)}

1 There is no universal agreement on this notation at present. Kaye [1] uses K (M;¢)
and I(M;¢c) for what we call cl(¢) and cl(¢) respectively, while Kossak—Schmerl [9]
uses Scl™ (&) for the definable closure of ¢ in M.



and
S ={[a,b] : a,b € M U{oo} with a < b}.

Elements of S are called semi-intervals. A semi-interval is finite if neither of
its end points is co. For I € C and [a,b] € S, we write [ € [a,b] to mean
a€l <b.

The automorphism group of M is denoted by Aut(M). Each automorphism
of M extends in the obvious way to M U {co} and to C. All actions by auto-
morphisms are written as superscripts on the right. If ¢ € M, then Aut(M, ¢)
denotes the pointwise stabiliser of ¢ in Aut(M). Similarly, if I € C, then
Aut(M, I) denotes the setwise stabiliser of I in Aut(M).

Definition 2.1. Two cuts I, J are said to be conjugate over ¢ € M if 19 = J
for some g € Aut(M,¢). Two cuts are conjugate if they are conjugate over 0.
The conjugacy class of a cut I is the orbit of I under the action of Aut(M).

Extending ideas of Paris and Kirby, indicators were defined in GCMA. We
set the scene by abstracting the topological information given by an indicator.
Recall first the convention [1, Page 146] that, in the model theory of arithmetic,
types over a model are not necessarily complete and may contain finitely many
parameters from the model. We shall use this terminology throughout.

Definition 2.2. A set B C § is a neighbourhood system if

B is nonempty;

B is invariant under the action of Aut(M);

V[a,b] € B (b>a+1);

V[a,b] € BVec € M ([a,c] € Bor [¢,b] € B);

Y(a,b] € BV[u,v] € S ([a,b] C [u,v] = [u,v] € B); and

for every B € M, there exists a recursive 3, type p(z,y) over M such
that

(0)
(1)
(2)
(3)
(4)
()

Va,b < B ([a,b] € B M F J\pla,b)).

If B is a neighbourhood system and [a,b] € B, then we say that [a,b] is a B-
interval, or interval if B is clear from the context. We write a < b or a <5 b
to mean [a,b] is a B-interval. It is also helpful to have a notation for semi-
intervals that identifies them as intervals: [a,b], or [a,b], if B needs to be
specified, will always denote a B-interval whereas [a, b] might or might not be
an interval.

The following is a basic property of neighbourhood systems.

Proposition 2.3. Let B be a neighbourhood system. Then for all finite inter-
vals [a,b], there exists ¢ € [a,b] such that |a,c],[c,b] € B.

Proof. Let [a,b] € B be finite, and let B € M be greater than a,b. Suppose



the formulas in the type given by axiom (5) for a neighbourhood system are
enumerated recursively in the sequence (¢, (z,9))nen In increasing strength,
so that

M EVYz,y< B (gon+1(:v,y) — SDn(CC,Z/))

for all n € N. By the ¥; recursive saturation of M, it suffices to show that for
each n € N, there is ¢ € [a, b] such that

M E pn(a,c) A pn(c,b).

Pick n € N and let ¢ € M be the least number making ¢, (a,c) true. This
exists since [a,b] € B. We can safely assume ¢ > a + 1 because this holds for
large enough n. The minimality of ¢ then implies the falsity of ¢, (a,c — 1),
and so [a,c — 1] & B. It follows from axioms (2) and (3) that [a,c] &€ B, and
hence by (3) again, [c,b] € B. Therefore M E ¢, (c, b) as required. O

We would also like to isolate the conditions that an indicated class of cuts
needs to satisfy.

Definition 2.4. A class Z C C is a species of cuts (species for short) if

(0) Z is nonempty;
(1) Z is invariant under the action of Aut(M); and
(2) for every B € M, there exists a recursive ¥, type p(x,y) over M such
that
Va,b< B (31 € Z (a el <b) < MFE M\pla,b)).

If I is an element of Z C C, then we say that [ is a Z-cut. Each species of cuts
Z comes equipped with a natural linear order, namely the subset relation, C.

Neighbourhood systems and species of cuts naturally arise from indicators
Y: M x M — M in the sense of GCMA. More generally, this Y might be a
class in the sense of M, i.e., segments of Y are parametrically definable in M.
Still more generally, our notion of indicator may not in fact be a function at
all, but is formed from a family of M-finite functions Yg: M_g x Mg — M
for various B € M such that for By < B, the functions Yp, and Yp, agree for
all z,y < By in the sense that Yp, (z,y) > N if and only if Yz, (z,y) > N.

Definition 2.5. Let B € M, and let Y: M_g x M_g — M be definable.

e The function Y is said to indicate a neighbourhood system B below B if
Va,b < B ([a,b] € B < Y(a,b) > N).

e The function Y is said to indicate a species of cuts Z below B if

Va,b< B (3l € Zacl <b<Y(a,b) >N).



e We say that Y is monotone if
VYa,b,u,v < B (a <uhNv<b=Y(ab) > Y(u,v)).

Proposition 2.6. (a) Relative to the other azioms for a neighbourhood sys-
tem, axiom (5) is equivalent to any of the statements that for all B € M
the neighbourhood system below B is indicated by: a definable function; a
monotone definable function; or a recursive type of bounded complexity.

(b) Relative to the other axioms for a species of cuts, aziom (2) is equivalent
to any of the statements that for all B € M the species is indicated below
B by: a definable function; a monotone definable function; or a recursive
type of bounded complexity.

Proof. (Sketch.) Fix B C S. Pick a recursive 3, type p(z,y) such that
Va,b < B ([a,b] EBe ME /)(\p(a,b)) .

Let d € M be the parameters that appear in p(z,y), and write p(z,y) as

p(z,y,d). Then p(z,y,d) is coded in M by c, say, so that

{(c)n :n e N} ={"p(z,y,2)" : (z,y,d) € p(z,y,d)}.
Define a function Y: M_g x Mg — M by
Y (2,y) = (un) (= Sats,, (), [2,y,d)))

for all x,y < B. This is a definable function that indicates B below B. To
obtain a monotone indicator function replace Y with

Y'(z,y) = max{Y (a,b) : a,b € [z,y]}.

Since Y and Y’ are definable with domain M_.g x M_p they are M-finite. So,
they can be coded as a sequence of values by some y € M, say. Then the type

p(u,v) ={Y(u,v) >n:n € N},
is a recursive X type indicating B using the parameter y.

The argument for species is similar. O]

Every neighbourhood system B gives rise to a ‘largest’ species of cuts that
it indicates. Similarly, every species of cuts Z has a natural neighbourhood
system that describes it. How to go from a neighbourhood system to a species
of cuts and back again is defined next.

Definition 2.7. Given a neighbourhood system B, define Z(B), the species
of cuts associated with B, by

Z(B)={l€C:V[a,b €S (I €la,b = la,b] €B)}.



Definition 2.8. Given a species of cuts Z, define B(Z), the neighbourhood
system associated with Z, by

B(Z)={[a,b] e S:3 € Z1 € [a,b]}.

Proposition 2.9. (a) If B is a neighbourhood system then Z(B) is a species
of cuts, and if Z is a species of cuts then B(Z) is a neighbourhood system.

(b) If B is a neighbourhood system, then B(Z(B)) = B.

(c) If Z is a species of cuts, then Z(B(Z)) D Z.

Proof. Straightforward applications of the axioms. O]

Given a neighbourhood system B and [a,b] € B, there are many cuts I €
Z(B) with a € I < b. In particular the next definition provides some natural
examples. For this definition, recall that, for a nonempty set A C M, inf A is
the greatest initial part of M that is disjoint with A and sup A is the least
initial part of M containing A.

Definition 2.10. Given a neighbourhood system B and a,b € M U {oo}, let

o Mp(a) =inf{c € M : [a,c| € B}, and
o Mplb] =sup{d € M : [d,b] € B}.

The notation Mg(a) and Mp[b] hides the fact that these may not be defined
for all a,b. We say that Mp(a) exists if

Jy € M U {0} [a,y] € B.
Similarly, Mg[b] ezists if

dx e M [z,b] € B.

It is simple to check from the axioms that given [a,b] in a neighbourhood
system B, both Mpg(a) and Mg[b] exist and are between a and b. The cuts
Mp(a) and Mp[b] are respectively the smallest cut in Z(B) containing a and
the largest cut in Z(B) not containing b. It follows from Proposition 2.3 that
Mpg(a) and Mp[b] must be distinct.

It is time to see some examples.

Example 2.11. The set B¢ = {[a,b] € S : Vn € N a+ n < b} is easily seen
to be a neighbourhood system. The associated species of cuts is C, the set of
all cuts of M.

Example 2.12. Let Y be an indicator in the sense of GCMA and suppose

ME Jz3yY(z,y) =2 n



for every n € N to avoid triviality. We call indicators in this old sense
GCMA indicators in this paper. Set

BY ={[a,b) € S : Y(a,b) > N} U{[a,00] € S:3I € M Y(a,b) > N}.

Then BY is a neighbourhood system. The associated species of cuts is ZY =
Z(BY), which is the largest set of cuts indicated by Y. For example, if Y is the
Paris-Harrington indicator for cuts satisfying PA, then ZY is the topological
closure of the set of cuts satisfying PA; or alternatively, it is the set of all cuts
satisfying the Ily consequences of PA.

Example 2.13. Recall that M is short recursively saturated if each recursive
type p(z) that contains a formula of the form x < a, where a is a parame-
ter from M, is realised in M. Suppose M is short recursively saturated. Fix
a recursive sequence (t,(x))nen of Zx Skolem functions with the following
properties:

e Vne NVr e M (t,(z) < thi1(z));

e Vne NVr e M (x < t,(x) < t,(z+1)); and

e for each £ Skolem function s(z) there is an n € N such that for all x € M,
we have s(z) < t,(x).

Using short recursive saturation, one can show that the set

Beem = {[a,b] € S :Vn €N (t,(a) < b)}

is a neighbourhood system. Intervals in B*™ will be called elementary inter-

vals. The corresponding species of cuts, Z9°™ = Z(B°°m) is the species of

elementary cuts of M. By a diagonalisation argument, it can be seen there is
no definable function Y': M? — M such that

Y(a,b) > N & [a,b] € B™

for all a,b € M. Therefore, our definition of a neighbourhood system is strictly
more general than its counterpart in GCMA.

For B = B the cuts Mp(a) and Mg[b] are familiar cuts, usually denoted
M (a) and MTIb].

In certain circumstances, the neighbourhood system B*™ can be regarded as
the ‘finest’ such system, as the following proposition shows.

Proposition 2.14. Suppose M is recursively saturated and let B be a neigh-
bourhood system such that for each a € M there is ¢ € M with [a,c] € B.
Then B D Belem,

Proof. For each a € M, the semi-interval [a, 00| is in B since there is some
c € M with [a,00] 2 [a,c] € B. Now let [a,b] € B"™ and ¢ € M with



la,c] € B. Assume b # oo, or else we are done. Note that b > cl(a), and so
by recursive saturation, there is an automorphism ¢ of M fixing a such that
¢9 < b. It follows from the axioms that [a,b] € B. O

It can easily be checked that some facts about indicators transfer to this more
general setting. The following lemma is formulated in terms of the standard
cut because the region around N is the place where we are mostly interested
in. It is also true of other cuts, as we leave the reader to verify.

Lemma 2.15. Let B be a neighbourhood system, let B € M, and let' Y be an
indicator for B below B. If [a,b] C M_p is a B-interval, then

{n>N:ME Ju,v] C[a,b] (Y(u,v) =n)} Caer M \ N.
Proof. Take a B-interval [a,b] C M_p and define X to be the set
{n e N: 3J[u,v] C [a,b] (Y(u,v) =n)}.
Note that X is nonempty.

Suppose X Z. N. Then X has an upper bound in N, say D. Now for every
x € [a,b],

[z,0] € Biff Y(z,b) > Niff Y(z,0) > D.
Therefore, since the set {z € [a,b] : [z,b] € B} contains a and is bounded
above by b, it has a maximum element, say z* € M. So [z*,b] € B but
[z*+1,b] ¢ B. This contradicts (2) and (3) in the definition of a neighbourhood
system. O

3 The topology on Z and enforceable properties

Kotlarski seems to be the first person who explicitly studied families of cuts
with their topology obtained from the order relation. His paper, Some remarks
on initial segments in models of Peano arithmetic [12], is of particular rele-
vance here. In the terminology here, his Theorem 1 shows that if Y is the
Paris-Harrington indicator then ZY is homeomorphic to the Cantor set, and
the species Zpy of cuts satisfying PA is a dense subset of ZY. His Theorem 3
(attributed to Paris) shows furthermore that Zps is meagre in Z¥. See also
earlier papers by Kotlarski [10,11] which investigate the species of elemen-
tary cuts, and the appendix to Smoryniski [15] which summarises this work of
Kotlarski.

The class of all cuts C is linearly ordered by inclusion. Every linear order
carries a natural topology, the so-called order topology, in which the basic
open sets are open intervals. A species of cuts Z can therefore be considered



as a topological space, where the topology on Z is the subspace topology
inherited from C. Each B(Z)-interval [a,b] determines an open set

{] S MB(Z)(CL) <I< MB(Z)[b]}
in Z, and open sets of this form generate the topology on Z.

Proposition 3.1. Given a species of cuts Z, the topological closure Z of Z
inCis Z(B(Z)).

Proof. If I € Z, then there is [a,b] € B(C) containing I such that no Z-cut is
between a and b. However, this means [a,b] € B(Z) and hence I ¢ Z(B(Z2)).
Conversely if I € Z then every [a,b] € B(C) which contains I also contains
some J € Z. Therefore I € Z(B(Z)). O

Paris and Kirby call two families of cuts symbiotic if they have the same
indicators. This generalises immediately to our context, explaining perhaps
our use of the word ‘species’.

Definition 3.2. Two species of cuts Z; and Z5 are symbiotic if every open
set containing a cut from one species contains a cut from the other, i.e., if
their closures are equal: 2| = Z,.

In the rest of this section, we will assume M s countable, B is a neighbourhood
system, and Z = Z(B) is the closed species of cuts associated with B.

Proposition 3.3. The space Z is order-isomorphic (and hence homeomor-
phic) to either

(i) 2%, the Cantor set with its usual ordering and topology; or
(ii) 2¥ + 1, the Cantor set with an additional isolated point greater than all
the others.

Proof. Fix an enumeration (x,),en of M.
Define the sequence ([a,, by])se2<w of B-intervals recursively as follows.

Let ag = 0. By axioms (0) and (4) for a neighbourhood system, 0 < oco. If
there is b € M such that [b, o0] & B, then choose such by to be b; otherwise,
define by =

Let n € N and ¢ € 2" such that [a,,b,] is defined. If there is ¢, € M such
that a, < ¢, < by, then define

las, z,], if ay < 2, < by;
laco, boo] = { [7n, o], if ay < 2, and [a,, 2, &€ B;

las,c,], otherwise;

10



and
[zn, bs], if ay < @, < by
last, bo1] = § [¢o, xn], if 2, < by and [z, b, & B;
leo,bs], otherwise.

If there is no ¢ € M satisfying a, < ¢ < b,, then set both [a,0,by0] and
[as1,bs1] to be [ay,bs].

Using the axioms and the enumeration of M, it is straightforward to check
that every non-isolated cut in Z is the limit of an increasing sequence (acyp)new
for some ¢: w — 2, and conversely any such limit is a cut in Z. We omit the
details.

The case when Z turns out to be order-isomorphic to 2 +1 is when no ¢ € M
can be found such that a, < ¢ < b, for some o € 2<“. Note that in this case,
b, = oo by Proposition 2.3, and so we must have b, = by = oco. It follows that
lay, c] & B for all ¢ € M greater than a,, because otherwise, either [c, 0] € B
or it is not. The former contradicts the fact that we are in this case, while
the latter contradicts our choice that by = oo. Therefore, [¢,00] € B for all
sufficiently large ¢ € M by axiom (3). All such [c¢, oo] can only contain one
cut, and so it has to be M. This is the isolated greatest element of Z. O]

The various cases implicit in the proof just given do all occur.

Example 3.4. Let Y be the Paris-Harrington indicator for initial segments
satisfying PA. Then Z = ZY is closed by Example 2.12, and it is order-
isomorphic to 2¢. There are proper cuts in Z arbitrarily high in M and also
nonstandard cuts in Z arbitrarily low in M, as well as both end points, M
and N in Z.

Example 3.5. Suppose M F —Con(PA). Let Y be an indicator for initial
segments satisfying PA + Con(PA). Then once again Z = Z¥ is closed and is
order-isomorphic to 2¢, but this time there is some B € M above all [ € Z.

Example 3.6. Suppose M is short, i.e., M = cl(a) for some a € M, or equiv-
alently, M has no proper elementary initial segment containing a. Suppose
further that M is short recursively saturated. Then Z = Z¢°™ is a closed
species by Example 2.13. The full model M itself is clearly in Z, but Z does
not have arbitrarily large proper cuts of M, since if a € [ <, M then I = M.
So in this case Z = 2¥ + 1.

Proposition 3.3 makes a whole range of topological tools available to us. For
example, we now know that Z, as a topological space, is compact, totally dis-
connected, of cardinality 2%, and homeomorphic to a complete metric space.
It is perfect if and only if M is not an isolated point. In addition, the Baire
Category Theorem applies. Recall a set is comeagre if it contains a countable

11



intersection of dense open sets.

Baire Category Theorem. A comeagre subset in a complete metric space
is dense in this space.

In particular, comeagre sets in a complete metric space are nonempty. In fact,
using a tree argument, one can show that every comeagre set in our space Z
has size the continuum. The intersection of countably many comeagre sets is
comeagre, and the set Z \ {I} is comeagre for any non-isolated point I € Z.
Hence the complement of any countable set of non-isolated points is comeagre.

Dense subsets of a complete species are exactly those that are indicated in the
sense of Kirby—Paris [5]. This is one point of interest in comeagre sets of cuts.
Comeagre sets have many nice properties, including a useful game-theoretic
characterisation.

Definition 3.7. The Banach—Mazur game on B is the following game.

e There are two players, called V and 3.

e Starting with V, the two players alternatingly choose a B-interval that is a
subinterval of the previously chosen one.

e The game terminates in w many steps.

A play of this game gives rise to a sequence ([an,b,])nen. The cut sup{a, :
n € N} is called the outcome of the play. The player 3 can always play in such
a way to ensure that this is a cut lying in Z.

A property P of cuts is enforceable if 9 has a way to ensure the outcome of a
play has property P. Similarly, a subset P of Z is enforceable if the property
of being an element of P is enforceable.

By ‘dovetailing’ several strategies together, it is easy to see that 3 can play
to enforce countably many properties simultaneously, provided she can en-
force each individual one. This observation is part of the proof of Banach’s
characterisation of comeagre sets.

Theorem 3.8 (Banach). A subset P C Z is enforceable if and only if it is
comeagre in Z.

From the point of view of Baire category, an enforceable property P of Z-cuts
is satisfied by a large set of cuts I € Z. So a ‘general’ (i.e., not carefully
chosen or exceptional) example of a cut in Z would be expected to have many
such enforceable properties. It cannot satisfy all of them unless [ is actually
isolated in Z because Z \ {I} is comeagre. A generic cut I in Z is one that
satisfies as many enforceable properties as is reasonably possible. Say that
P C Z is invariant under automorphisms of M if {19 : I € P} = P for each

12



g € Aut(M).

Definition 3.9. We say that a Z-cut [ is generic (in Z) or Z-generic if I is
an element of each comeagre P C Z invariant under automorphisms of M.

For a simple example when generic cuts might exist, suppose there is some
cut I € Z such that the set

{I"€ Z:g9€ Aut(M)}

is comeagre. Then the cut I is generic. To see this, let P be an invariant
enforceable property and play the Banach—Mazur game to enforce P and the
property of being conjugate to I simultaneously. The resulting cut has both of
these properties, and hence [ satisfies P. The next result gives a more useful
generalisation of this observation.

Theorem 3.10. Let M E PA be countable and Z a closed species of cuts
order-isomorphic to 2¥. Suppose G is a set of Z-cuts such that

(1) G is a dense subset of Z that is invariant under automorphisms of M ;
and

(i1) for all I € G and all ¢ € M, there is an interval [a,b] € B(Z) containing
I in which all cuts in G are conjugate over c.

Then G is a comeagre set of cuts in Z and the cuts in G are precisely the
Z-generic cuts.

Proof. We start by showing that the property of being in G is enforceable.
This will show that G contains all generic cuts. We play the Banach—-Mazur
game. Fix an enumeration (z,),en of M. At stage n in the game we will have
chosen

[ J ]0,[17...,]n_1 S g,

® §1,92,---,0n-1 € Aut(M)a

® Cy,Cl,...,Ch1 € M; and

e a descending sequence [ag, by, [a1,b1], ..., [an—1,bn_1] of B(Z)-intervals

such that for all i < n,

o I; € [a;, bi;

e g € Aut(M,co,c1,...,¢i1) with I = I;; and

e all G-cuts in [a;, b;] are conjugate over cg, ¢y, .. ., ¢;.

The intervals [a;, b;] are our plays in the game.

Given our opponent’s move [u,v] in the game, we first choose a G-cut I, €

[u,v] using the density of G. If n > 0, then we will also need to choose an
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automorphism g, € Aut(M, co, ¢ ..., c,_1) such that ", = I,. This can be
done using the inductive conditions since I,,_1, I,, € [a,_1,b,_1]. If n is even,
n = 2k say, then we set

Cp = Cop = T}
If n is odd, n = 2k 4 1 say, then we choose

Cn = Coppy = a7
instead. Using condition (ii) on G, choose [an,b,] C [u,v] containing I, in
which all G-cuts are conjugate over ¢, ¢y, . .., c,. We play the interval [a,, b,]
in the game.

The play continues in this fashion and constructs a cut J € Z which is the
limit of (a,)nen. We must show that J € G. In view of condition (i), it suffices
to show that Iy and J are conjugate.

Observe that g,,;11 fixes ¢, for each n,i € N. So if x = x;, then cop1 =

PR s fixed by gorio, gorrs, etc. Therefore, for each x € M, there is

k € N such that

2919279k — 29192°9k+1 — 9192 Gk42 — . . .

We define g: M — M so that each x € M is mapped to the eventual value of
(x919290), . Tt is easy to see that g preserves the £, structure and is injective.
It is surjective because for each y € M, there is k € N such that y = z = cox,
and so
g: y95k19§k1_1"'9f1 — Y.

Finally, I§ = J because ¢ is the ‘limit’ of (g192 - - - 9;)1eny While J is the ‘limit’ of
(I1§'9*"9") 1. This completes the proof that G is enforceable and every generic
cut isin G.

To show that every I € G is generic, let P C Z be Aut(M)-invariant and
comeagre, and [a,b] be chosen so that I € [a,b] and every G-cut in [a,b]
is conjugate to I. Then we play the Banach-Mazur game starting with [a, 0]
enforcing P and G simultaneously to construct some J € GNP with J € [a, b].
Then [ is conjugate to J and hence satisfies P, as required. O]

Question 3.11. Suppose the set G of Z-generic cuts is comeagre in Z. Does
it follow that conditions (i) and (ii) in the statement of Theorem 3.10 hold?

4 Examples of enforceable properties of cuts

The objective of this section is to extend the results of enforceability of various
properties of cuts in GCMA to the setting of this paper. We make the global
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assumption that our model M E PA is countable and nonstandard, and Z is
a closed species of cuts order-isomorphic to 2. We let B = B(Z) be the asso-
ciated neighbourhood system. To apply the results under these assumptions
when Z = 2¥ 41, we can replace Z with Zy = Z \ {M}, which is also closed.

Proposition 4.1. It is enforceable that a Z-cut is not an w-limat.

Proof. By assumption, no I € Z is isolated so Z \ {/} is comeagre. The
proposition follows from the countability of M as there are countably many
cuts which are w-limits. O]

Proposition 4.2. [t is enforceable that
I # Mg(a) and I # Mgla] whenever a € M
for a Z-cut I.
Proof. There are countably many cuts of the form Mz(a) or Mzlal. O

In a similar way one can see that it is enforceable that a cut is not definable over
finitely many parameters from M in any reasonable logic, such as infinitary
logic or second order logic, since there are only countably many conjugates of
these parameters.

Definition 4.3. Let £/ denote the language obtained from %, by adding
an extra unary relation symbol, which will usually represent a cut of M. The

language obtained from .Z{ by adding all .# Skolem functions is denoted by
L.

Definition 4.4. A 1Y formula is an %! formula of the form
Viel3dyeld(z,y,z)
where 0(Z,7,2) € A;.

Proposition 4.5. It is enforceable that a Z-cut I has the property that N is
Hgl) definable with parameters in (M, 1) for a Z-cut I.

Proof. We play a Banach-Mazur game on B. Suppose V plays [a, b] in his first
move, and without loss of generality we may assume b is finite. Let Y € M be
a monotone indicator for B below b+ 1. We show that 3 can force the outcome
of the play I to satisfy

{neM:MEVzel3dyelY(z,y) =2n}=N

Note that, since we can make the outcome to be a Z-cut, it is clear that we
can enforce [ to satisfty {ne M : M EVz €I Jy € I Y(z,y) > n} O N. Let
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n € M be nonstandard, and suppose that 3 is given [u,v] C [a,b] to play in.
Using Lemma 2.15, let [z, y,] C [u,v] such that Y (x,,y,) < n. Using the
countability of M, player 3 can do this for every nonstandard n € M in any
single play. Now, if I is an outcome of this play and n € M is nonstandard,
then we have z,, € I < y, such that

Y(zn,y) < Y(2n,yn) <n

for each y € I by the monotonicity of Y. This proves the claim. O

Remark. In the terminology of Kirby [4, Definition 4.5], the above proof shows
that one can enforce the index of a cut corresponding to an indicator to be N.

Corollary 4.6. [t is enforceable that a Z-cut I has the property that (M, I)
s not Hél) recursively saturated.

Proof. If not, apply Hél) recursive saturation to the set of formulas {z > n :
neNyU{Ve eI Iy elbxy,za)} where O(x,y, z,a) is the A; formula

from the last proposition. O]

Enforceability results related to the Kirby—Paris notions of semiregularity and
regularity are proved in GCMA. A slight modification of the Grzegorczyk
hierarchy as used there gives us the following.

Definition 4.7. The neighbourhood system B is said to be relatively inde-
structible if for every [a,b] € B, there is an element ¢ € M such that

a = (C)o < (C)l < KL (C)a+1 =b.
Using the same ideas it is straightforward to modify the combinatorial ar-
guments given as Theorem 4.13 and Theorem 4.15 in GCMA to obtain the
following results showing that semiregularity is the best one can hope for in

the sense of the ‘classical’ Paris—Kirby hierarchy of combinatorial properties.

Proposition 4.8. Semiregularity is enforceable if and only if B is relatively
indestructible.

Proposition 4.9. The property of being not reqular is enforceable.

5 Pregenerics and the existence of generic cuts

Throughout this section, we work with a recursive enumeration (6;(x,y, Z))en
of Z) formulas in the free variables z, y, Z. We fix a neighbourhood system B,
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and its associated closed species Z = Z(B). We continue the global assumption
of the last section that Z has no isolated point.

Our objective is to prove results showing the existence of generic cuts. Our
motivation is Theorem 3.10 and the problem we address is to identify those
intervals which are sufficiently homogeneous for many cuts in them to be con-
jugate. The existence of generic cuts relative to an indicator Y was shown in
GCMA by a related ‘self-similarity’” property of intervals, that of being ‘con-
stant’, together with a ‘smallness’ notion. We give the first of these definitions
here.

Definition 5.1. Let ¢ € M. An interval [a,b] € B is constant over ¢ (with
respect to B) if

Vz € [a,b] V[u,v] C [a,b] 32" € [u,v] tp(x,é) = tp(z, ).

We shall present a two-variable version of this self-similarity idea, which seems
to give a more elegant approach. Intervals having this stronger self-similarity
property will be called pregeneric, and it will be clear that a pregeneric interval
is constant in the sense of GCMA.

It will turn out that, by an argument similar to the one in GCMA, pregeneric
intervals exist in abundance in arithmetically saturated models of PA. We
shall study this argument much more closely. This investigation will reveal
that although arithmetic saturation is essential for the full argument, a large
part of the proof goes through without any countability or saturation assump-
tion. For applications to understanding truth in expanded structures of the
form (M, I) we will be particularly interested in how the arguments can be
adapted to notions of self-similarity with respect to finite sets of formulas.
This increases the number of technical details but in other respects the main
ideas are straightforward and similar to those in the earlier paper.

Definition 5.2. Let z,y,2',y,¢ € M and n € N. We write (z,y,¢) =,
(2',y/, ) to mean

/X\ (gi(xv%é) = 91‘($,,y,,5)),

i<n

and write (x,y,¢) = (2/,y/,¢) to mean

/X\ (Qi($7y76) A gi(x,7y,75))'

ieN
More generally, for uy, us, ..., Uy, v1,09...,0, € M, we write (uq,...,u,) =
(v1,...,0,) to mean tp(uy, ..., u,) = tp(vy, ..., vy).

Definition 5.3. Let [a,b] be a finite semi-interval, n,k,¢ € M, and Y an
indicator for B below b + 1. We say that [a,b] is (n, k)y-pregeneric over ¢ if
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Y (a,b) > k and for all z,y € [a, b]
V[u,v] C [a, b] (Y(u,’u) >k — 3y € u,v] ((z,y,¢) =, (x’,y’,é))).

We shall omit the subscript Y if the indicator in consideration is clear from
context.

To prove the existence of (n, k)-pregeneric intervals, we use the tree argument
given in GCMA. The only difference here is that the tree is now finite.

Definition 5.4. Let [a,b] € S be finite, and let Y be a monotone indicator
for B below b+1. Fix ¢ € M. For i € N, define e;: M, x M, — M by setting
ei(r, s) to be

max {l e M3, s Cr, s (Y(r’,s’) = AVx,y € [r, 5] ﬂ@i(x,y,5)>}

for each r, s < b. The tree of possibilities from [a,b] over ¢ (with respect to'Y')
is a sequence ([ry, S5])sea<w of semi-intervals defined recursively as follows.

e Set [rg, sg| = [a,b].

e Let m € N and o € 2™ such that [r,, s,] is defined. Set [0, Sp0] = [r's, So)
and let [ry1,8,1] C [ry, So| be the unique semi-interval such that r,; is the
least r in [r,, s,] such that

ds € [ry, So) (Y(T, S) = em(ry, So) ANVx,y € [r, 5] ﬂem(x,y,é)),
and s, is the greatest s in [r,, s,] such that

Vo, y € [ro1, 8] =Om(x,y,0).

Remark. Note that the function e; defined above is dependent on and uniquely
determined by the choice of ¢ € M and the indicator Y. Note also that both e;
and the tree of possibilities are uniformly definable in (M, Sat) for all partial
inductive satisfaction class Sat for M. This is also true for (n, k)y-pregenericity
over a tuple ¢ € M.

The idea is that given a large enough finite semi-interval [a, b] and a formula
0(z,y), exactly one of two things has to happen: either there is a large subin-
terval of [a,b] in which no pair of elements satisfies 6(z,y), or there is not.
In the first case, the witnessing subinterval is homogeneous for 6(x,y), sim-
ply because no pair of elements in there satisfies this formula. In the second
case, the whole semi-interval is already homogeneous for 6(z,y), because by
assumption, every large enough subinterval contains a pair of elements sat-
isfying 0(z,y). In either case, we get a sufficiently large subinterval that is
homogeneous for 0(x,y).

We can repeat this argument with all %, formulas. It is sometimes quite hard
to find out which case we are in, but we definitely know what possibilities we
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can have. This gives rise to the tree of possibilities defined above. We do not
need to know which way down the tree we have to go. We only need to know
there is a way that works.

Lemma 5.5. Let [a, b] be a finite semi-interval, let Y be a monotone indicator
for B below b+ 1, and let ¢,k € M such that Y (a,b) = k. If ([ry, So])oc2<w is
the tree of possibilities from |a,b] over ¢ then

Ym € N 3Jlo € 2™ (Y('r’g,sg) > kAVi<m (0(i+1) =0 < erq),, 501,) < k))

Proof. This can be proved by an easy induction on m. O]

It is then down to checking how many formulas we need to guarantee a certain
amount of pregenericity.

Definition 5.6. Let §: N — N be the function defined by: for all n € N, the
number (n) is the least m € N such that

if p(z,y,Zz) is a Boolean combination of formulas in {6;(x,y,2) : i < n},
then there is a formula ¢'(x,y,z) € {6;(x,y,2z) : i < m} that is logically
equivalent to ¢(z,y, 2).

Theorem 5.7. Let n be a natural number, [a,b] a finite semi-interval, k,¢ €
M, andY a monotone indicator for B below b+ 1 such that Y (a,b) > k. Then
la,b] contains a semi-interval that is (n,k)y-pregeneric over ¢. Moreover, if
Sat is a partial inductive satisfaction class for M, then one such semi-interval
is definable in (M, Sat) uniformly in the parameters a,b,¢, Y, n, k.

Proof. Let ([ry, So])sc2<w be the tree of possibilities from [a,b] over ¢. Using
Lemma 5.5, define the function 7: N — 2<“ by setting 7(m) to be the unique
o € 2™ such that

Y(re,50) 2 kAVi<m (o(i+1) =0 e(ro),,501,) < k)

i)

for each m € N. It can then be checked that [rz(gm)), x| C [a,b] is (n, k)y-
pregeneric over ¢ for every n € N.

The ‘moreover’ part can be proved by a careful check of all the steps, and is
left to the reader. O]

By noting that almost everything in the above argument is coded in M, one
can prove the same statement with fully pregeneric intervals in a similar way.

Definition 5.8. Let ¢ € M. An interval [a,b] € B is pregeneric over ¢ (with
respect to B) if

Va,y € [a,b] V[u,v] C [a,b] 32’y € [u,v] (z,y,¢) = (2,4, ¢).
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We say that a B-interval is pregeneric (with respect to B) if it is pregeneric
over (.

Theorem 5.9. Suppose M is arithmetically saturated. Let ¢ € M. Then every
B-interval contains a subinterval pregeneric over c.

Proof. Let ¢ € M and [a,b] € B. Without loss of generality, assume b # oco.
Fix a monotone indicator Y for B below b + 1, and let ([ry, S¢])sca<e be the
tree of possibilities from [a,b] over ¢. By recursive saturation, this tree of
possibilities and thus (Y (74, S5 ))se2<e are coded in M. Using the strength of
N in M, let d > N such that

Vo € 2 (Y(ry,8,) > d < Y(ry,s,) > N).
In particular, Y (a,b) > d since [a,b] € B. By Lemma 5.5, we have
Vm e N 3dlo € 2™ (Y(TU, Sg) > dAVi <m (o(i+1) =0 < (1o, Sq1,) < d))
Using recursive saturation of M, let n > N and o € 2" such that

Y(rs,85) >dAYi<n (J(i +1) =0 < e;(ryy,, 501,) < d)

AViI <n ([rari,sgri] D [TUTHN‘SOHHD'
It can then be checked that [r,, s,] C [a, b] is pregeneric over ¢. O

One can try to strengthen the definition of pregeneric intervals to one involving
tuples of length greater than two. However this does not give us anything much
stronger, at least when the model is recursively saturated.

Proposition 5.10. Suppose ¢ € M and M is recursively saturated. Then an
interval [a,b] € B is pregeneric over ¢ if and only if

Vz € [a,b] Y[u,v] C [a,b] 37" € [u,v] (Z,¢) = (T, ¢).

Proof. One direction is obvious. For the other, note that if we can deal with
max{z} and min{z}, then we can as well deal with the rest of Z using recursive
saturation. [l

Remark. The above argument also shows that modulo recursive saturation,
pregenericity of a B-interval [a, b] over ¢ in M is equivalent to

Vu,v] C [a,b] ',V € [u,v] (a,b,¢) = (a’,V, ).

Another way to strengthen the notion of pregenericity is to require an interval
to be pregeneric over all elements in a cut /. In some very particular cases,
this works.
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Proposition 5.11. Suppose M is recursively saturated and B = B™. Let
¢, € M, and let [a,b] be a finite elementary interval such that ¢,c < a and
tp(c) = tp(c). Then

V[u,v] C [a,b] 3a',b" € [u,v] (a,b,¢c) = (', ).
In particular, if ¢ = ¢, then [a,b] is pregeneric over c.
Proof. Let [a,b] be a finite elementary interval, ¢, < a and [u,v] C [a,b].

First, we find @’ > w with (a,c) = (¢/, ') and o’ < v. Consider the recursive
type

p(x) ={e(x,d) < pla,c) : p(z,y) € Ln}
U{tn(z) <v:neN}U{u<z}.

Take n € N and p(z,y) € £ such that M F ¢(a, ¢). Pick an elementary cut [
in Ju,v]. Since ¢ < a, we see that M F Qz ¢(x,c) where Q denotes ‘there are
cofinally many’. Our hypothesis on ¢ and ¢ then implies that M F Qz ¢(z, ).
By the elementarity of I in M, we have M F Qx € I p(x,c). In particular,
ME Jz > u (ty(z) < vAp(z,d)). So p(z) is finitely satisfied in M. Using
recursive saturation, let a’ € M realise p(x), so that

(a,c¢) = (d',d) and u < ' < v. (%)

Next, consider the recursive type
q(y) = {0(a,b,c) < 0(d',y,c) : 0(x,y,2) € La} U{y < v}

Let 0(z,y,2) € £ such that M F 6(a,b,c). We need to show M F Jy <
v 0(d,y, ). Now, we know that M E Jy6(a,y,c) and so M F Jyb(d',y,)
by (). Thus

(uy)(0(d’,y, ) € cl(d’, ') € Mp({d',¢)) < v,

proving that ¢(y) is finitely satisfied in M. Using recursive saturation again,
let O realise ¢(y) in M. Then

(a,b,c) = (a',b,¢) and u < a’ <V < v,
as required. O
However, in most other cases, this does not work.

Proposition 5.12. For every B > N, there exists cofinally many ¥ € M
such that, for every B-interval [a,b] C Mg and every d > N, there exists a
nonstandard ¢ < d with [a,b] not pregeneric over ¢,Y .
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Proof. Let Y € M be a monotone indicator for B below a sufficiently large B €
M. Let [a,b] C M_p be a B-interval and d > N. Without loss of generality,
suppose Y (a,b) > d. Using Lemma 2.15, pick [u,v] C [a,b] such that N <
Y (u,v) < d. Let ¢ =Y (u,v). Then for all [@',0] C [u,v], we have

Y(d,0) <Y (u,v) =c
by monotonicity of Y, and
Y(a,b) >d>Y(u,v) =c.

Hence (a,b,c,Y) # (d',V,¢,Y) for every [a/,V] C [u,v]. Therefore, [a,b] is
not pregeneric over c, Y. O

These show that pregenericity is stable and optimal. More evidence of this
comes from its relationship with arithmetic saturation.

Proposition 5.13. If for every f € M, there are B € M and an indicator Y
for B below B such that a pregeneric interval over f,Y exists in M_.p, then
N is strong in M.

Proof. Suppose the hypothesis in the proposition holds. Let f: N — M be a
coded function in M. Abusing notation, we let f be a code for this function
in M. Using the hypothesis, let B € M and Y be an indicator for B below B,
and pick a B-interval [a,b] C M_.p that is pregeneric over f,Y. Note that by
the proof of Proposition 2.6, we may assume Y to be monotone.

We claim that f(n) > N if and only if f(n) > Y(a,b) for all n € N. Note that
since [a,b] € B, the ‘if part’ is obvious. So let n € N such that f(n) > N.
Using Lemma 2.15, let [u,v] C [a, b] such that N < Y (u,v) < f(n). Recalling
that [a, b] is pregeneric over f,Y, let a/,b" € [u,v] such that

(a,b, f,Y) = (V. f.Y). (1)
By monotonicity of Y, we have Y (a’,t') < Y(u,v) < f(n). Thus by (}), we
get Y(a,b) < f(n) as required. O

While pregeneric intervals are interesting in their own right, the reason for
their introduction is to construct generic cuts. In doing this we shall prove the
following characterisation of generic cuts in countable arithmetically saturated
models.

Theorem 5.14. Suppose M is countable and arithmetically saturated. A cut
I is Z-generic if and only if it is contained in a pregeneric B-interval over ¢
for every ¢ € M.

The proof of this will emerge in the discussion of this section. For the purpose
of this proof, let us make the following temporary definition.
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Definition 5.15. A cut is generic if it is contained in a pregeneric B-interval
over ¢ for every ¢ € M.

It is easy to check that all generic’ cuts are in Z. For if [ is generic’ and [a, ]
is a semi-interval containing I, then there is an interval [u, v] pregeneric over
a,b containing I. Now a,b ¢ [u,v], and so [a,b] D [u,v]. Hence [a,b] is a
B-interval by axiom (4) for a neighbourhood system.

It is straightforward to show that generic’ cuts exist using Theorem 5.9 and
Banach’s characterisation of comeagre sets.

Theorem 5.16. If M is countable and arithmetically saturated, then being a
generic cut is an enforceable property of Z-cuts.

Proof. Let M be countable and arithmetically saturated. We play the Banach—
Mazur game on B. If ¢ € M, then J can make the outcome of a play be
contained in a pregeneric interval over ¢ using Theorem 5.9 in a single step.
Since M is countable and 3 has w many steps to play, she can ensure that the
outcome is contained in a pregeneric interval over ¢ for every ¢ € M. Therefore
it is enforceable that the cut constructed is generic’. O]

Corollary 5.17. If M is countable and arithmetically saturated, then there
exist generic cuts for B. Furthermore every generic cut is generic .

A direct consequence of Proposition 5.13 and the definition of generic’ cuts is
that the strength of N in the hypothesis of the above theorem is necessary.

Corollary 5.18. If M contains a generic cut then N is strong in M.

The other implication, that a generic’ cut is generic will follow from the next
theorem, using Theorem 3.10.

Theorem 5.19. Suppose M is countable and arithmetically saturated. Let
¢ € M, and let [a,b] € B be a pregeneric interval over ¢. Then any two
generic cuts contained in [a,b] are conjugate over ¢.

Proof. We use a back-and-forth argument.

Let ¢ € M, and let [a,b] € B be a pregeneric interval over ¢. Pick two
generic’ cuts I and I’ in [a, b]. At any stage of the back-and-forth, we have

e an interval [u,v] containing I,
e an interval [u/,v'] containing I’, and

e tuples 7,7 € M

such that
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e [u,v] is pregeneric over ¢, r,

e [u/,v'] is pregeneric over ¢, 7', and
= &) — / ! = =/

o (u,v,e,7) = (u,v,e7).

We show how to add an arbitrary *r to 7. In the process, we find *u,*v to
L A S

replace u, v and choose corresponding *u’, *v’, *r’ while keeping 7’ fixed. This
constitutes the ‘forth’ step. The ‘back’ step is similar.

Using the definition of generic’ cuts, choose an interval [*u, *v] that contains [
and is pregeneric over u, v, ¢, T, *r. Pick an automorphism g € Aut(M, ¢) such
that (u,v,7)9 = (u/,v',7), which is possible since (u,v,é,7) = (u/,v',¢,7)
and M is recursively saturated. It follows that [*u?,*v?] C [u’,v']. Using
pregenericity of [u/,v'] and recursive saturation, let h € Aut(M,¢c,7’) such
that [u/,v']" C [*u?, *v9]. The back-and-forth then continues by setting

[[*U,, *U/]] _ [[*ugh_l7 *Ugh_l]] and *7’/ — *Tgh_l.

The required isomorphism is given by 7 — 7’ at the end. O]

6 Conjugacy properties and truth

We continue working with a fixed neighbourhood system B and its associated
species of cuts Z = Z(B). As in the previous section, we assume Z to be order-
isomorphic to 2. Additionally, in this section we assume that our model M
15 countable and arithmetically saturated.

Results in the last section show that, in this context, the set G of Z-generic
cuts is comeagre in Z and satisfies the hypotheses of Theorem 3.10. The
neighbourhood of a generic cut is fuzzy or blurred in some sense, and this
agrees with the idea that pregeneric intervals should be homogeneous. In fact,
Theorem 3.10 says that this blurry nature actually characterises genericity. It
is natural to ask exactly how large the blurry zone around a generic cut is.
The following shows that one can improve Theorem 5.19 slightly.

Corollary 6.1. Ifc € M and [a,b] is an interval satisfying

Az € [a,b] V[u,v] C [a,b] 32’ € [u,v] (z,¢) = («/, ),
then all generic cuts in [a,b] are conjugate over .
Proof. Let [a,b] be an interval and z,¢ € M such that

V[u,v] C [a,b] 32" € [u,v] (x,¢) = (2, ). (1)
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Pick two generic cuts [; and I, from [a, b]. Using Corollary 5.17, let Juy, v1] and
[us, v2] be pregeneric intervals over a, b, ¢ that contain I; and I, respectively.
Note that Juy,v;] and Jug, v2] have to be subintervals of [a, b].

Our plan is to map I; close enough to I, via z, so that Theorem 5.19 can
be applied. Using the axioms for a neighbourhood system, let [u), v5] be a
pregeneric subinterval of [us, v5] over ¢ containing I, such that

Uy <ty < vl < . (8)

Using () and recursive saturation, let g;,¢9> € Aut(M,¢) such that z9* €
21
[uy,v1] and 292 € [uh, vh]. Tt follows from (§) that [uy, vi]? % N [ug, v2] € B.

-1
By Theorem 5.19, both I;* ?* and I, are conjugate over ¢ to the generic cuts
in this intersection. Therefore, (M, I1,¢) = (M, I, ¢). ]

This turns out to be the best possible.

Proposition 6.2. Let [a,b] be a B-interval, ¢ € M, and D C Z dense in
[a,b]. If all D-cuts in [a,b] are conjugate over ¢, then

x € [a,b] Y[u,v] C [a,b] 32" € [u,v] (z,¢) = (2, ).

Proof. Using Theorem 5.9, let [r, s] C [a, b] be a pregeneric interval of ¢, and
pick = € [r, s]. We show that this = works.

Let [u,v] C [a,b] be arbitrary. We apply a similar trick as in the previous
proof again. Using the axioms for a neighbourhood system, let [u’,v'] be a
subinterval of [u, v] such that

u<u K <Ko,

Using the density of D in [a,b], take D-cuts I € [r,s] and J € [u',v']. By
assumption, I is conjugate to J over ¢. Let h € Aut(M,¢) such that 1" = J.
Then [r, s]" N [u,v] is an interval whose preimage under & is a subinterval of
[r,s]. Let [r’,s'] be this preimage. Recall that [r,s] is a pregeneric interval
over ¢. So there exists an automorphism g € Aut(M, ¢) such that x9 € [, §']
and hence 29" € [u,v], as required. ]

We now start to prove some new results that have no counterparts in GCMA.
The main theorem is a syntactic characterisation of conjugacy for generic cuts.
As a corollary, we obtain a description of the orbits of M under the action of
Aut(M, I) where I is a generic cut.

Our first objective is to count the number of conjugacy classes of generic cuts.
It will turn out that in some cases there will be exactly Ny conjugacy classes,
and in other cases just one. We have already proved results showing that under
certain conditions two generic cuts are conjugate. To characterise conjugacy,
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we additionally need to know when two generic cuts are not conjugate. It is
obvious that if two cuts are separated by a definable point, then they cannot
be conjugate, and this observation gives us one set of examples.

Example 6.3. Let D be a dense set in Z that is invariant under the action
of Aut(M), and suppose B = BY for some GCMA indicator Y. If M ¥ Th(N),
then there are at least countably infinitely many conjugacy classes of D-cuts
that are contained in cl(0).

Proof. Let D, Y and B = BY be as in the statement and suppose M ¥ Th(N).
Since Z is closed, Mp(0) exists and is in Z. Note that

M;(0) = sup{(py)(Y(0,y) > n) : n € N} Cc cl(0).

Take a € cl(0) such that a > Mg(0). Then [0,a] € B by the definition of
Mpg(0). Using an argument similar to that in the proof of Proposition 2.3
one can divide the B-interval [0, a] indefinitely into smaller subintervals by
definable points. Since D is dense in Z, we get any finite number of mutually
non-conjugate D-cuts in cl(0). O

When M F Th(N), this trick does not work because there is no nonstandard
definable point. Instead we may make use of a function H that grows like an
ascending sequence of gaps. The cuts in consecutive gaps cannot be conjugate
because the maximum w such that H(w) is in the cut are all in different
congruence classes modulo a sufficiently large natural number. The following
technical lemma allows this to work.

Lemma 6.4. Let Y be a GCMA indicator. If M EVx3yY (x,y) = n for each
n € N, then there is a strictly increasing function H: M — M definable in M
without parameters such that

H(k) <pgr Hk+1)
for all large enough k € M.
Proof. Suppose Y is as in the hypothesis.

If M EVnVx3yY (z,y) > n, then let H be the function defined recursively by

H(0) = 0AVz (H(z+1) = (u)(Y(H(2),y) > 2+ 1)).

If M E 3IndxVyY (z,y) < n, then define H by
H(0)=0AVz (H(z+1) = (uy)(Y (H(z),y) = n)),

where n = (maxm)(Vz3y Y (x,y) = m). O
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Proposition 6.5. Let Y be a GCMA indicator such that B = BY, and let D
be a dense set of Z-cuts that is closed under the action of Aut(M).

(a) If M ¥ Vx3yY(x,y) = n for some n € N, then no Z-cut can contain
cl(0).

(b) If M EVz3yY(x,y) = n for alln € N, then there are at least countably
infinitely many mutually non-conjugate D-cuts containing cl(0).

Proof. Let Y and D be as in the statement of the proposition.

For (a), take n € N such that M E JzVy Y (z,y) < n. Let «* be the least x
such that M F VyY(x,y) < n. Then z* € cl(0) and no B-interval is above z*
because n € N. So, there cannot be any Z-cut above cl(0).

For (b), suppose M F VrdyY(x,y) > n for each n € N. Let H be a fast
growing function whose existence is guaranteed by Lemma 6.4. Pick x > ¢l(0)

such that ([[H(Jc +k),H(x+Fk+ 1)]])keN is a sequence of B-intervals, which

is possible by recursive saturation. Using the density of D in Z, take a D-cut
Iy € [H(x + k),H(x + k+ 1)] for each k£ € N. Noting that

(maxw)(H(w) € Iy) =z + k

for each k € N, it can easily be verified that the cuts in (I)gen are mutually
non-conjugate. O

Corollary 6.6. If B = BY for some GCMA indicatorY , then there are exactly
countably infinitely many conjugacy classes of generic cuts in M.

Proof. Recall that Theorem 5.19 says that if two generic cuts are in the same
pregeneric interval, then they are conjugate. By the countability of M, this
implies that there can be at most countably infinitely many conjugacy classes
of generic cuts in M.

On the other hand, note that it is not possible to have M F Th(N) and
M E 32Vy Y (z,y) < n for some n € N

both true at the same time. Otherwise, the truth of 323y Y (z,y) > n in M
for every n € N then implies the existence of a nonstandard definable element.
Therefore we are done by Example 6.3, Proposition 6.5, Theorem 5.16, and
the Baire Category Theorem. O]

Remark. Note that there is exactly one conjugacy class of generic cuts for
Be*™ by Theorem 5.19 and Proposition 5.11.

All the above non-conjugacy claims are actually proved by cooking up a sen-
tence that is true in one structure but not the other. One may ask whether we
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are able to find non-conjugate generic cuts that are elementary equivalent in
the expanded language. The following suggests that this may not be possible.

Example 6.7. Suppose B = B%™ and let I be a generic cut. If a,b € I such
that tp(a) = tp(b), then (M, I,a) = (M, 1,b).

Proof. Let a,b € I <. M such that I is generic and tp(a) = tp(b). Using
Theorem 5.14, let [r,s] be a pregeneric interval over a,b that contains I.
Then we necessarily have a,b < r.

Using Proposition 5.11 and recursive saturation, let g € Aut(M) such that
a="b% and [r,s])? C [r,s].

Let J = IY. Then
J=1¢€]rs]’ C[rs]
so that both I and J are generic cuts in [r, s]. However, [r, s] is pregeneric

over a by Proposition 5.11. So by Theorem 5.19, there is an automorphism
h € Aut(M, a) such that J» = I and thus

(M, 1,b) = (M, I9,09) = (M, J,a) = (M, J" a") = (M, I,a),
as required. O

This essentially says that the Z! formula ‘z € I’ tells us a lot about an
element  when I is generic for B%°™. On the other hand, the formula ‘z ¢ I’
is much weaker.

Proposition 6.8. Suppose that all Z-cuts are closed under addition and mul-
tiplication. If I is a generic cut, c € M and B > I, then there are d,d € M
such that I < d,d < B and (d,c) = (d',c), but (M, I,d,c) # (M,I,dc).

Proof. Under the hypotheses of the proposition, let [a,b] € B be a pregeneric
interval over ¢, B containing / using Theorem 5.14.

By Proposition 4.2 and Theorem 5.14, I # Mplb], so I < Mgl[b]. Let w €
Mp[b]\ I. By Proposition 2.3, Mg(w) # Mpg[b]. Take z € Mp[b]\ Mp(w) and let
d = (w, z). Note that Mg[b] € Z is closed under addition and multiplication,
and thus d € Mp[b]. So now, we have

acl <w<Kz<(w,z)=de Mg[b] <b.
Using Theorem 5.16 and the Baire Category Theorem, pick a generic cut
J € Jw, z] C [a,b]. Then I and J are conjugate over ¢, B by Theorem 5.19. Let

g € Aut(M, ¢, B) such that J9 = I. Let d' = d9 so that (d,c,B) = (d, ¢, B).
In particular, as d < B, we have d’ < B as well. Note also that since J < d,
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we have

I=J9<d=d.
Let 71 be the Skolem function defined by

Wp (m1(p) = () (By(p = (2.9)))).
Then 7 (d) = 7 ({(w, z)) = w > I, but since w € J, we have
mp(d) = 7y (d) = (np(d)? = w? € J9 = L.
Therefore, (M, I,d,c) % (M,1,d,c). O

Again, the above proof uses an . formula that is true in one structure but not
in the other to prove non-conjugacy. This seems to provide evidence supporting
the conjecture that the Z4 theory of (M, I) determines its conjugacy class
when [ is generic. We shall now show that this conjecture is in fact true.
Surprisingly, the formulas used in the proof of Proposition 6.5 are already
sufficient to describe the theory of (M, I). The next definition sets up the
notation we shall need properly.

Definition 6.9. Let ¢(Z,y) be an £, formula, I € C and ¢ € M. We write
Vé(j’y)(é)l for

Fy el (pEy) AV €T >y—-p@y))).

The expression /.

L@ (©)1 is the negation of v/}, (¢)]. Define

1 (5) — (maxy € I)(SD(Q y))a if V(,Io(f,y)(é)l;
0, otherwise.

Note that the statements defined above can be expressed in the language Z4.

Lemma 6.10. Let [ € Z be generic. If ¢ € M, and [a,b] € B is pregeneric
over ¢ and contains I, then V;(j,y)(é) < a for every ZLa formula ¢(Z,y) such

that Vé(i’y) (©)].

Proof. Fix an £, formula ¢(Z,y). Clearly 0 < a. Suppose M F v’ (@)1 Let

(Y

A=vl;,(€)+1 €l Then Mg(A) < I by Proposition 4.2 and Theorem 5.14.
Let B € M such that Mg(A) < B € I.If A> a, then [A, B] C [a,b] and

M E v5.,)(@) € [a, 0] A o€ V5, (©)

while M E Vy € [A, B] —¢(c,y) by the maximality of Vgi(a’c,y)(E% which is not

possible since [a, b] is pregeneric over ¢. Therefore, Vé(iy) () < A<a. ]
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Theorem 6.11. Suppose M is countable and arithmetically saturated. Let
ce M, andlet I,J € Z be generic. Then (M,1,¢) = (M, J,¢) if and only if
for every ZLx formula a(Z,y)

(M,I)|=1/ »@le (M, J)Fya(xy(c)l.

Proof. One direction is obvious. For the other direction, let ¢ € M, and let
1,J € Z be generic such that M F 1/{1( ( c)| yaJ ( ¢)] for every £y for-
mula «(Z,y). Without loss of generality, assume 1< J Using Corollary 5.17,
pick a pregeneric interval [a,b] over ¢ containing I, and a pregeneric inter-
val [u,v] over ¢ containing J. By genericity and Proposition 4.2 we have
Mpg(a) < I. Let A € M such that Mg(a) < A€l <b.

Consider the recursive type

p(y) ={u <y <v}U{alcy) < alcA) : a(r,y) € Za}.

We show that this is finitely satisfied in M. Let a(z,y) € £ such that
M E a(e, A). Now if M F v}, ()], then by Lemma 6.10 and the maximality

of v} 5,)(€), we have
a <A< Vy;, (0 <a,

which is a contradiction. So M F l/a(xy (€)7. By our hypothesis, we have
ME Va (z.)(©)1. Note that A € I < .J and M F a(¢, A). So there are cofinally
many y € J such that M F «(¢,y). In particular, there is a y € J such that
MEy>uAna(éy). Thus M F Jy € [u,v] a(c,y), as required.

Let B realise p(y) in M. By construction, tp(A, ¢) = tp(B, ¢). Using recursive
saturation of M, let g € Aut(M,¢) such that A9 = B € [u,v]. Since a <
A < b, the intersection [a,b]’ N [u,v] is a B-interval. Using Theorem 5.16
and the Baire Category Theorem, pick a generic cut J’ in this interval. By
Theorem 5.19, J is conjugate to .J' over ¢, and (J') " is conjugate to I over
¢. Therefore, I is conjugate to J over c. O

Apart from giving alternative proofs of Proposition 6.2 and Example 6.7 for
generic cuts, this theorem also implies a weak quantifier elimination result.

Definition 6.12. Define .2/ to be the language obtained from 2 by adding
a new predicate

T _

Va(f,y) (‘T)l
for each £ formula o(Z,y). £i structures are interpreted as £/ structures
in the natural way.

Corollary 6.13. Let I € Z be generic and a,b € M. Then (M,I,a) =
(M, 1,b) if and only if a and b satisfy the same quantifier free £ formulas
with respect to I. In particular, (M, 1) is w-homogeneous.
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The following example shows that the new predicates ycfy(m)(i)L are necessary
for the previous corollary. The idea is very similar to that in Proposition 6.5(b).

Example 6.14. Suppose B = B and let I € Z be generic. Then the
formula

(max j)((z); € I) is even,
which is equivalent to

Hw((x)m = ’/ﬁj(y=(w)j)(x))’

is not equivalent in (M, I) to a quantifier-free £, formula. In fact, it is not
even equivalent to any infinite conjunction of quantifier-free £ formulas.

Proof. Using recursive saturation, let ¢ € M code an ascending sequence of
gaps of length w, i.e., ¢ codes a sequence of nonstandard length such that
(¢); < (¢)iy1 for each i € N. Let [ € M be the length of this sequence.
Without loss of generality, assume this sequence is strictly increasing on its
domain. Pick an indicator Y for B below max;;(c); + 1. Using the strength
of Nin M, let v € M be nonstandard such that

Y((c)i; (i) > N < Y((¢)i, (¢)iv1) > v.

for every ¢ € N. By overspill, let m > N such that
Vi<m Y((¢)i, (¢)iz1) > v.

Using arithmetic saturation, let ¢ < m be nonstandard such that i & cl(c).
Pick generic cuts I € [(¢);—1, (¢);] and J € [(¢), (¢)i+1]. Notice that Proposi-
tion 5.11 and Theorem 5.19 imply that I and J are conjugate. Let g € Aut(M)
such that I = J9 and set d = 7. Then by our choices of I and J,

(max j)((c); € I) and (maxj)((c); € J)
are of different parities. Hence

(M, I,¢) # (M, J,c) = (M, J?,¢%) = (M, I, d).

On the other hand, if ¢ is a Skolem function such that t(c) € [(¢)i—1, (¢)it1],
then i is definable from (pj)((c); = t(c)) € cl(c), which is contradictory to
our choice of i. So for every Skolem function ¢, we either have t(c) < (¢);—1,

or (€)1 < t(c). It follows that

t(c) e I'iff t(c) < (¢)i—1 iff t(c) € Jiff t(c?) € JUiff t(d) € I
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for every Skolem function t in .Z,. Thus, ¢ and d have the same quantifier-free
L4 type since ¢ = d. Therefore, it is not possible that the formula

(max j)((x); € I) is even
is equivalent to an infinite conjunction of quantifier-free .ZJ, formulas. m

We are not yet able to prove a real quantifier elimination result, and whether
such a result is possible is the main open question arising from this work.

Question 6.15. Let Z be a closed species of cuts without isolated points and
I be a Z-generic cut. Is it the case that every .£{ formula () is equivalent
in (M, ) to a single quantifier-free formula 6,(z) in the language £/ with
the same free variables?

The main obstruction to answering this question at present is the observation
that (M, I) is not recursively saturated even for types built from rather simple
Z1 formulas.

7 Elementary generic cuts

Elementary cuts are so important and often studied that we feel it useful to
highlight them as a special case of the general theory above. Throughout this
section we assume that our model M of PA is countable and arithmetically
saturated.

In the case when B = B and Z = Zm = Z(B) of Example 2.13, we
have shown that generic cuts for this species exist; we shall call these cuts
elementary generic cuts. The notation Mp(a) and Mp[b] will be used without
the subscripts following the convention in the literature.

One useful property of the neighbourhood system of elementary intervals is
the following.

Proposition 7.1. The notion of elementary intervals B™ is relatively inde-
structible.

Proof. Let [a,b] € B. Consider the recursive type
p(x) ={Vi <a (t.((z);) < ()i1) :n € N} U{(x)o =a A (z), < b}.

This is finitely satisfied in M since [a,b] contains an elementary cut. Any
element realizing p(x) in M witnesses the relative indestructibility of [a,b]. O
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Therefore, by Propositions 4.8 and 4.9, an elementary generic cut is semireg-
ular but not regular in M. It follows that M is never a conservative extension
of an elementary generic cut I, since I would be strong and hence regular in
any conservative extension.

Elementary generic cuts, like generic cuts for other species, are not definable
over a finite set of parameters in any logic. This gives an alternative way to
prove, for instance, Proposition 4.2, which says that elementary generic cuts
cannot be of the form M (a) or M[b]. Using Corollary 4.6 and the well-known
idea of chronic resplendency (see for example the presentation in Kaye [1,
Theorem 15.8]) it is also easy to see that there is no ¥} formula characterising
genericity below any B € M.

Proposition 4.2 gives us some information about automorphisms fixing I point-
wise via a theorem by Kotlarski [11].

Theorem 7.2 (Kotlarski [11, Theorem 4.1)). Let J be an elementary cut of
M. If J # M[b] for any b € M, then J is closed in M, i.e.,

Wb >J 3g € Aut(M) (Vo € J 2% =z and b #b).

Corollary 7.3. All elementary generic cuts are closed.

It also follows from Proposition 4.2 and and Lemmas 2 and 4 of Kotlarski [10]
that an elementary generic cut I of M is recursively saturated as an £, struc-
ture. The standard systems of I and M are the same, since [ is nonstandard,
and so, by general results, I and M are isomorphic. This proves the following.

Proposition 7.4. There is a countable arithmetically saturated elementary
end-extension N of M such that M is elementary generic in N .

Similarly, any countable arithmetically saturated M is K [b] for some countable
arithmetically saturated elementary end-extension K of M and some b € K.
So we have the following.

Proposition 7.5. There is an elementary end-extension N of M such that
M s not elementary generic in N.

Although an elementary generic cut I is ‘rich’ considered as a model in its own
right, the pair of models (M, I) is not recursively saturated as an £} structure
(Corollary 4.6). The proof of that corollary gives an example of a recursive
set of formulas that is finitely satisfied but not realised. It is instructive in the
case of elementary generic cuts to give an alternative example.

The idea of sequences of skies or gaps, introduced by Smoryriski-Stavi [16]
and discussed further by Smorynski [14] and Kossak—Schmerl [9], gives us a

33



particularly nice necessary condition on (M, J) being recursively saturated,
where J is an elementary cut of M.

Fact 7.6 (Smorynski [14, Theorem 2.8]). If J is an elementary cut such that
(M, J) is recursively saturated as an L% structure, then J is the limit of an
ascending sequence of gaps of length J.

Proposition 7.7. An elementary generic cut I of M is not the limit of an
ascending sequence of gaps of length I.

Proof. Suppose ¢ € M codes an ascending sequence of gaps of length I such
that
sup{(c); :i €I} =1.

Using Corollary 5.17, pick a pregeneric interval [a, b] € B over ¢ that contains
I. Note that the sequence ((¢);)ics is cofinal in I. So let ¢ € I such that
(¢); > a. By Theorems 5.16 and 5.19, I is conjugate to a generic cut in
[()i, (€)ix1] C [a, b] over c. This is impossible since no Z-cut J € [(¢);, (¢)i+1]
can satisfy

{(c); € J : j € M is less than the length of ¢} C¢ J,
as required. O

All our known examples of elements ¢ € M for which N is definable in (M, I, ¢)
are above I. So we ask the following.

Question 7.8. Suppose [ is elementary generic. What is the set
{c € M : N is definable in (M, I,¢)}?
In particular, is it a subset of M \ I7

We conjecture that the elements of M definable in (M, I, ¢) are precisely the
elements in the Skolem closure of {v}, (c) : a(z,y) € Zr}. In the case
when c is absent, by using Corollary 7.12 below and a theorem by Kossak and
Bamber [8], one can verify that all elements definable without parameters in
(M, I) are in cl(0).

Theorem 7.9 (Kossak and Bamber [8, Theorem 4.1]). If J € C is closed under
exponentiation, then every element definable in (M, J) without parameters is
in cl(c) for some c € J.

To return to the topic of conjugacy properties, let us recall the following
particular case of Proposition 5.11.

Proposition 7.10. Every elementary interval has a pregeneric subinterval
that contains exactly the same elementary cuts.

34



A consequence of this is Example 6.7, which says that
Va,b € I (tp(a) = tp(b) = (M, I,a) = (M, 1,b))

for an elementary generic cut I. This relates generic cuts to the notion of free
cuts defined by Kossak.

Definition 7.11 (Kossak [6,7]). An elementary cut I is free if whenever a,b €
I with tp(a) = tp(b), we have (M, I,a) = (M, I,b).

Corollary 7.12. All elementary generic cuts are free.

This provides new examples of free cuts. By Theorem 5.19 and Proposi-
tion 5.11, all elementary generic cuts are conjugate, and hence by Theorem 5.16
the orbit of I under the action of Aut(M) has cardinality 2%. This partially
answers a question by Kossak [7, Problem 4.7]. Proposition 6.8 also says some-
thing about the degree of freeness of I. In Kossak’s terminology [6], it says
that I is the largest initial segment J of M such that I is J-free in M.

However, in view of the above discussion, this does not provide us with an
example of a free cut I such that (M, I) is recursively saturated. One possible
way to pursue this problem is to relax the axioms for a neighbourhood system
so that Proposition 7.7 cannot be proved but enough freeness is retained. The
statement of Proposition 2.3 seems to be a good candidate for a weakening
of axiom (5). Another way is to use arguments similar to those in Section 6
of GCMA. A positive answer to the following question will also help.

Question 7.13. If M is arithmetically saturated, I is generic for some species,
and a € M, is the theory Th(M, I,a) coded in M?

In view of the interesting work that has been done on the automorphism
group of a countable recursively saturated or arithmetically saturated model
of PA, it would seem that the automorphism group Aut(M,I) is begging
to be explored, where [ is elementary generic, or more generally generic in
some other closed species of cuts. Theorem 5.19 and Corollary 6.13 provide
useful ways to construct automorphisms in this group. The new back-and-
forth system taken from GCMA, together with the well-known ones, suggest
that the structure of such groups is quite rich.

We only state two questions relating to this group here, and leave it to the
reader’s imagination to come up with others. In the next two questions, let I
be elementary generic in M, or perhaps generic in some other closed species
Z.

Question 7.14. Is Aut(M, I) a maximal subgroup of Aut(M)?

Note that Aut(M, I) is naturally equipped with a topology, namely that gen-
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erated by cosets of pointwise stabilisers of finite tuples from M. It is straight-
forward to see that G/(j) is a closed normal subgroup of Gy;;.

Question 7.15. Other than G(;), what are the other closed normal subgroups

of G¢n? In particular, if M F Th(N), is G(;y the only closed normal subgroup
of G{I}?

Another topic that is worth looking into is about £ elementary extensions of
the structure (M, I), where I is elementary generic in M. By standard model
theoretic techniques, we know that there is a countable elementary extension
of (M, I) that is recursively saturated in the expanded language. So genericity
is not preserved in all such extensions by Corollary 4.6. However, is there any
proper elementary extension (N, .J) = (M, I) such that J is generic in N7
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